Embedding Complementary Deep Networks for Image Classification
Qiuyu Chen; Wei Zhang; Jun Yu; Jianping Fan
IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2019) (CCF A)

In this paper, a deep embedding algorithm is developed to achieve higher accuracy rates on large-scale image classification. By adapting the importance of the object classes to their error rates, our deep embedding algorithm can train multiple complementary deep networks sequentially, where each of them focuses on achieving higher accuracy rates for different subsets of object classes in an easy-to-hard way. By integrating such complementary deep networks to generate an ensemble network, our deep embedding algorithm can improve the accuracy rates for the hard object classes (which initially have higher error rates) at certain degrees while effectively preserving high accuracy rates for the easy object classes. Our deep embedding algorithm has achieved higher overall accuracy rates on large scale image classification.